
esecurityplanet.com

How to Bake Better Security into

Applications

By Drew Robb, Posted October 17, 2013

8-10 minutes

Download our in-depth report: The Ultimate Guide to IT Security

Vendors

Developers are being urged to create applications at an ever-faster

pace, with many of them designed to operate on the Web or run on

mobile devices. All of these factors open the door to security

vulnerabilities.

"When secure code practices are not part of development, you end

up with data breaches, a large percentage of which are related to

code issues," said Martin Zinaich, information security officer for the

City of Tampa and a member of the Wisegate network of expert IT

professionals.

Rewriting code after the fact is problematic, so his preferred

approach is to work with developers to bake in security from the

start.

"Developers typically want to write secure code, so in my

experience if given a better way to do it they will eagerly embrace,”

Zinaich said. “However, secure programming has to be brought to

the forefront of development."

1 of 6

Unfortunately, there are few compliance requirements and technical

standards to guide developers in writing, testing and implementing

code. But Zinaich points to a few that might help programmers.

OWASP (Open Web Application Security Project) is a non-profit

focused on improving the security of software. It produces a yearly

“OWASP Top Ten” as a means of increasing awareness of the most

critical Web application security flaws.

For 2013 they are:

Injection

Broken Authentication and Session Management

Cross-Site Scripting (XSS)

Insecure Direct Object References

Security Misconfiguration

Sensitive Data Exposure

Missing Function Level Access Control

Cross-Site Request Forgery (CSRF)

Using Components with Known Vulnerabilities

Unvalidated Redirects and Forwards

Alternatively, there is CERT’s Secure Coding, which outlines

commonly observed coding security errors.

So what are some of the best practices app developers should be

implementing to avoid common security errors? Input sanitation is a

good place to start and helps avoid injection of code vulnerabilities,

the number one problem on OWASP's list.

2 of 6

"Preventing injection requires keeping untrusted data separate from

commands and queries," said Zinaich. "The preferred option is to

use safe Application Programming Interfaces (APIs). Positive or list

input validation is also recommended, but is not a complete

defense."

Developers can take advantage of professional code reviews, or if

budgets do not allow this, having peers review code as a stop-gap

measure. Automated tools are also available to help with this

practice. And OWASP has local chapters where developers get

together to learn and share secure coding best practices.

Risk Analysis and App Integrity

A growing area of the security landscape is risk analysis and

application integrity verification. Application risk vendor Appthority

does risk analysis of thousands of systems and devices and notes

common errors. It has noticed, for example, that software

development kits (SDKs) often add risky behaviors and/or expose

private data to mobile apps.

"Even though most developers may not be aware of the privacy and

risky behaviors in the SDKs they are adding, such as Adware, they

need to research and make sure these SDKs respect the privacy of

mobile app users," said Kevin Watkins, Appthority's CTO. "If not,

they run the risk of the SDKs affecting their reputation and also

limiting the use and market of their apps."

He outlines best practices such as maintaining an accurate and

comprehensive privacy policy that includes all private data the app

comes in contact with; being aware of external logic and code that

your app includes such as external SDKs; including app security as

3 of 6

part of your app development process; and using app intelligence

services to identify behaviors that would cause policy violations.

"In most cases when we present our findings to developers, they

had no idea these privacy and risky behaviors were there," said

Watkins. "A majority of them are easily fixable."

Threat Modeling and Principle of Least Privilege

Over the years, developers have been educated to think about

security requirements solely in terms of making logins work. That is

a much too limited view. Wendy Nather, research director for

Security at 451 Research, believes threat modeling should also be

part of developers' security arsenal. This helps them see how an

authorized user could abuse the application, determine the valuable

facets of the application, see how hackers could get around

security controls, and what it would it take to overload the system

and disrupt the business.

Another coding goof is to use roles in the application to group

permissions together. This is a problem because if the roles or their

assigned permissions have to change, it means re-writing the

application; it also means users can collect roles over time, and

therefore have more permissions than they really should.

"Developers should think about maintainability as part of the

security system, and they should think about the principle of ‘least

privilege,’ giving the users the minimum of access to get the job

done," Nather said.

Mobile Apps and Defense in Depth

Chris Stahly, director of services at application integrity vendor

4 of 6

Arxan Technologies, believes defense in depth is one of the most

important app security best practices. This is accomplished through

use of multiple security controls, each of which serves to prevent

malicious attack. If the security model relies on only one control,

however, that control becomes a single point of failure for the

system.

"Attackers love single points of failure," said Stahly. "Also the

security should be customized to each app and easy to renew with

new software releases, ensuring that the most sensitive

components of the app are protected from the latest threats."

Developers should pay close attention to what happens to their

code when it runs on an untrusted device. Attacker-owned devices

are, by their very nature, untrusted devices. Stahly said that mobile

security begins with attacker-owned devices.

"All code written by a mobile application developer is subject to

lifting from the device, followed by reverse engineering," he said.

"This unfettered access to the client has numerous ramifications in

terms of application security. For example, mobile apps are directly

subject to intellectual property theft or malware insertion, they can

be distributed freely, other security controls can be removed."

The point here is that anyone who uses a mobile device can

completely reverse engineer any application. Therefore, developers

need to be careful about what they put into the client device.

Another safeguard based on defense-in-depth principles is to

institute measures to prevent tampering with the device. Traditional

secure coding practices (avoiding buffer overflows, safe data

handling guidelines and the like) will not solve this problem.

"Secure coding guidelines are good, but they need to be combined

5 of 6

in a defense-in-depth approach with other controls that provide

apps with self-defending attributes, such as the use of tools that

actively prevent reverse engineering and modification of the code,"

Stahly said.

Know Thy Users

A different perspective is offered by software giant SAP. Robert

Grazioli, CIO of SAP Cloud, is an advocate of paying attention to

software inputs and outputs. On the input side, he advised

developers to develop role-based security, protect against malicious

input (SQL injection, cross-site scripting, virus, etc.) and run the

app with least privilege. For outputs, he suggested the creation of

safe error messages, safe logging (know what you log) and

ensuring complete audit trails exist.

A big point that might be missed by many application developers is

knowing the needs of their end users. Developers are typically

experts in coding, and not in the domains they are asked to

produce apps for such as telecom, retail and transportation.

"Just being a good programmer is not enough," Grazioli said. "They

also need to understand the subject matter, as well as what

restrictions or laws apply."

Drew Robb is a freelance writer specializing in technology and

engineering. Currently living in California, he is originally from

Scotland, where he received a degree in geology and geography

from the University of Strathclyde. He is the author of Server Disk

Management in a Windows Environment (CRC Press).

6 of 6

